
THERMODYNAMIC SIMILARITY AND PREDICTION OF THE PROPERTIES 

AND CHARACTERISTICS OF SUBSTANCES AND PROCESSES 
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Principles of the theory of thermodynamic similarity are considered in applica- 
tion to all aggregate states of a substance, including phase transitions, and 
to the change in dissipative structures in open systems. 

In truth it is now impossible to name any branch of natural science in which representa- 
tions of the similarity of phenomena would not be utilized to some degree. But similarity 
reasoning reached its greatest development in the analysis of transformations of different 
kinds of energy, inparticular, in modern thermodynamics that studies the equilibri~ state 
of bodies and the nonequilibrium processes occurring therein. 

Although the terminology "thermodynamic similarity" was introduced not so long ago (it 
was first formulated clearly in [i]), representations of the similarity of the prope~:ties 
of substances have a long history going back to Van der Waals and his known law of corres ~ 
ponding states. This law was established for the liquid and gaseous states of a sub~tance, 
and the known Van der Waals equation of state for gases and liquids was its theoretical 
basis. It soon became clear that the law of corresponding states in its original form is 
not completely accurate, and consequently, is of limited value. In this connection, a more 
detailed examination was needed of those factors that actually govern the similarity of the 
properties of gaseous and liquid bodies. Meanwhile, it would be necessary to clarify whether 
similarity considerations could be extended to solid crystalline bodies and, if there is a 
foundation for this, to set up the corresponding characteristic similarity condition~. In 
particular the question of the similarity of melting curves that separate the crystalline 
and liquid phase domains required an answer. Furthermore, in connection with the discovery 
of several dissipative structures in open systems, that go over into each other unde~ defi- 
nite conditions, the important problem of the similarity of these transitions also occurred. 
The set of these as well as of other complex problems was the hypothesis for the recent crea- 
tion of the theory of thermodynamic similarity in whose development Soviet scientists have 
contributed greatly. It is difficult to overestimate the value of this theory for t~e des- 
cription of the behavior of various substances and the prediction of their properties and the 
processes originating therewith. 

SIMILARITY OF THE PROPERTIES OF LIQUID AND GASEOUS BODIES 

The constriction of the law of corresponding states is due to the fact that it is based 
on the Van der Waals equation which does not possess sufficient generality. Mayer and inde- 
pendently Bogolyubov solved the problem of the equation of state of real gases; particular 
but nevertheless sufficiently effective approaches were developed simultaneously by Frenkel', 
Band, Vukalovich, and Novikov (see [2] for a brief survey). It became clear as a consequence 
of these papers that just as many individual constants associated with the nature of the 
substance enter the equation of state as are contained in the potential equation of m~lecular 
interaction, i.e., not less than three. And since the starting point for the formulation of 
the similarity conditions is the equations for the critical point (Sp/Sv) T = 0, (82p/Sv2) = 0, 
it is evident that by using these two equations it is impossible to express all the indivi- 
dual constants in terms of the pressure, temperature, and volume at the critical poin~ Pc, 
Tc, v c = 1/pc and to reduce the equation of state to the dimensionless form in which 
parameters associated with the molecular structure would not be contained. Test showed, how- 
ever, that it is possible to limit oneself to just one such structural parameter which is 
~enoted by A* by the Filippov assumption [3] (the dimensionless specific heat Cp0/R was taken 
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as the parameter A* in the ideal gas state, i.e., as p + 0). An identical value of the 
parameter A* for a number of substances denotes that they comprise a group of thermodynami- 
cally similar substances. Any thermodynamic quantity, including any macroscopic property, 
can be represented for them, as is shown in [i], in the form of an identical function of two 
out of the three parameters presented, for instance, ~ = P/Pc, % = T/Tc and the parameter A*. 
Kamerling-Onnes proposed expressing the viscosity as the product of powers of the critical 
parameters, the molecular weight p, and the universal gas constant Rp by a function of the 
presented parameters. The critical parameters are generalized molecular interaction charac- 
teristics, which makes such an expression quite general, referred to all the properties of 
substances. In other words, for thermodynamically similar substances any property Y can be 
represented in the form 

Y ~- ~ "  ZgPle". [Y (PLY:' T/~., A*). (1) 

The values of i, j, g, s are i/2, 2/3, -i/6, -i/6 for viscosity, and according to [i], for 
heat conduction and the coefficient of self-diffusion they are, respectively, -1/2, 2/3, 
-1/6, 5/6 and -1/2, -1/3, 5/6, 5/6. 

The generalized dependences (I) permit computation of the properties of gases and liquids, 
with a good degree of accuracy, by means of the known properties of their thermodynamic ana- 
logs. These dependences are the start for the prediction of the properties of liquid and 
gaseous substances, including for the search (prior to synthesis) for working substances with 
optimal properties. 

Thermodynamic similarity considerations permit setting up an analogy later in the prog- 
ress of processes of the same kind for the change in state of liquid and gaseous bodies, i.e., 
to simulate them [4]. This latter is quite important, in particular, for describing heat 
transfer in a moving liquid or gas medium: since the analytic solution of the equations of 
motion and heat transfer with the temperature dependence of the transfer coefficients taken 
into account is an extremely difficult problem, then in many cases it is preferable and fruit- 
ful to use thermodynamic similarity methods. 

SIMILARITY OF PROPERTIES OF CRYSTALLINE SOLIDS 

The extension of similarity considerations to the properties of crystalline bodies was 
delayed a long time by the ambiguity in the question of whether there is a special point for 
these bodies that would be the analog of the critical point so that its parameters could be 
the characteristic scales of the state. Definiteness was introduced by the theory of phase 
transitions of the second kind that is associated with the name of Landau. 

Phase transitions in crystalline bodies are characterized by a change in the symmetry 
of the initial crystalline phase, where the high-temperature phase is usually, but not al- 
ways, more symmetric. The symmetry is determined by the magnitude of a parameter of order q 
which is a quantitative estimate of the long-range order selected by a definite condition 
with respect to a certain physical property. In the more symmetric phase n is taken equal 
to zero; in the less symmetric phase q varies between i and 0 until reaching the phase tran- 
sition point. For phase transitions of the second kind the order parameter varies continuous- 
ly and for transitions of the first kind, in a jump from the value ~' to 0 at the transition 
point. 

According to Landau, the Gibbs energy density # of the crystalline phase equals 

= % + A ~ + B ~ + C ~ 6 ,  (2) 

where ~o, A, B, C are functions of p, T. The expression for ~ refers to both the equilibrium and non- 
equilibrium states, where the conditions d~ = 0, d2~ > 0 should be satisfied by virtue of 
the known thermodynamics theorem on the minimum Gibbs energy in the equilibrium state. Con- 
sequently, B and C will be positive in sign in the domain of phase transitions of the second 
kind, while A is positive in a more symmetric and negative in a less symmetric phase, i.e., 
vanishes at the transition point. The equality 

A(p, T) = 0 (3) 

is the equation of the line of phase transitions of the second kind. 

In the domain of phase transitions of the first kind the quantity B is negative. The 
point determined by the equations 

A(p, T):::O; B(p, T ) = O  (4) 
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Fig. I. Phase diagram of a crystal with a tricritical 
(a) and a bicritical (b) point. 

is called the critical point of the crystal and its parameters are denoted by Pcc, Tcc" 

The chemical potential ~/p of each of the phases is identical on the line of pha~e transi- 
tions. For phase transitions of the first kind the chemical potential of the more ssm~netric 
phase is ~Q(2)/p(2), while taking into account the ~ump in the order parameter from r = q' 
to q = 0 in the less symmetric phase, it is ~0(Z)/p ~z) + A(q - q,)2/p[1) + B(q - ~,)L/p(1) + 
C(n - q,)6/p(Z). From the equality r = $(Z)/p(1) that should be satisfied bcth for 
q = q' and ~ = O, it follows that--Aq '= -BN '4 -Cn '6 = O. This equation should resu]t in 
one unique value of q' that will hold for A > 0 if 

B z = 4AC. ( 5 )  

Landau first obtained (5), although by a somewhat different means [5]; it determines the 
form of the line of phase transitions of the first kind near the critical point. The phase 
diagram corresponding to this case is shown in the figure a: the line of phase transitions 
of the first kind (solid curve) goes over continuously into the line of phase transitions of 
the second kind (dashed line) at the point K. The point K is called tricritical. Since (5) 
is satisfied only for A > 0, then evidently the boundary of the limits states of the here 
symmetric phase, i.e., its corresponding branch of spinodals, is characterized by A = 0. 

For A < 0 the unique value of q' is determined by the positive root of the equation for 
q', i.e., q,2 =--(I/2C)(B-- ~2 _ 4AC). The phase diagram for this case is displayed in the 
figure b; the phase III is more symmetric than the phases I and II. The line B = 0 is tan- 
gent to the line of phase transitions of the second kind at the point K while the line of 
phase transitions of the first kind is terminated at the point K that makes a certain angle 
with the line of phase transitions of the second kind; the point K is called bicritical. 

The critical point of a crystal (tricritical or bicritical depending on the kind of phase 
diagram) plays the same role for anisotropic bodies as the ordinary critical point plays for 
isotropic bodies, i.e., liquid and gaseous bodies. This is at least clear from the fact that, 
as is shown in the figure, it is possible to go continuously over from the phase I to II in 
the domain of the critical point of the crystal K; at the point K itself all the phases are 
identical. Hence, the partial derivatives of ~ with respect to N from second to fifth order 
hence vanish at the critical point of the crystal while, taking into account that the order 
parameter is the difference of the densities p - Pc at the ordinary critical point in this 
case, the second and third of the mentioned derivatives equal zero to a lesser degree. 

The parameters of the crystal critical point Pcc, Tcc can be taken as the characteristic 
scales of the crystalline state. Consequently, by analogy with (i) any property Y of the 
crystalline body can be represented in the form 

_ y T ,  , 
(6) 

where Ac* is a structural parameter associated with the relatively fine features of t~e crys- 
tal internal configuration while the function fy is identical for thermodynamically similar 
substances. 

The similarity of the properties of crystalline bodies is manifest most clearly in the 
identical universal nature of the progress of phase transitions of the second kind in differ- 
ent substances. In direct proximity to the phase transition point T c the properties vary ac- 
cording to the power law 
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Y = const  !1 - -  T/T~I b , (7) 

where b is the so-called critical index inherent to this property. It is denoted in terms 
of ~ for the order parameter, for the susceptibility I/(32~/3n 2) in terms of--y, for the r.m.s. 
fluctuations of order ~= in terms of -m'~ (where m' takes on the values 0, i, 2 .... [6]). 
Values of the critical indices are interrelated by definite relationships whose number is 
two and in certain cases three less than the number of the critical indices themselves. This 
means that the number of independent critical indices, and therefore, the number of indivi- 
dual constants associated with the nature of the substance also, does not exceed three for 
crystalline bodies. The above explains fully the similarity of processes of the change of 
state of crystalline bodies, including even the phase transitions of the second kind. A 
single definite set of values of the critical indices corresponds to the group of thermo- 
dynamically similar substances. In particular ~ = 0.33, X = 1.26, ~ = 0.64 (for m' = 0) for 
bodies for which the phase transitions of the second kind are accompanied by strong fluctua- 
tions. 

The values of Pcc, Tcc in (6) are unknown in practice for the majority of substances. 
This certainly reduces the role of (6), which should yet be considered as a formula not suit- 
able for practical purposes but more often as an expression of the thermodynamic similarity 
of crystalline bodies. Moreover, the values of Pcc are apparently quite large, which can 
complicate their utilization. The question naturally occurs as to whether or not there are 
other scale characteristics for crystalline bodies that could be utilized in place of Pcc, 
T cc. An exact answer is difficult; however, it can be assumed that such characteristics 
exist. Frenkel' [7] noted the important role of vacancies in the processes of the change of 
state of crystals. It is manifest in the fact that the order parameter can be expressed as 
the ratio between the difference in the numbers of sites occupied by atoms and the free 
(vacant) sites near some atom of the crystalline lattice and the number of occupied sites. 
Starting from this it is legitimate to assume that the quantity E/va, where v a is the activa- 
tion volume, which is equal in order of magnitude to the volume of a crystal elementary cell, 
can be considered as a certain characteristic pressure scale later denoted by PB" As regards 
the temperature scale, it can be the temperature of the triple point Ttr; let us recall that 
the melting point T m at atmospheric pressure differs slightly from Ttr. A possible objec- 
tion that since the liquid, gaseous and crystalline phases exist in equilibrium at the triple 
point, then the quantity Ttr turns out to be the characteristic scale not so much for the 
crystalline phase as for the other two, is removed by the fact of low pressure at the triple 
point. Consequently, the gas phase at the triple point can be considered an ideal gas and 
its presence will be equivalent to what would be if the condition of equality of its magni- 
tude 

S c p d T -  T S - ~  dT -o r- const 

were imposed on the chemical potential of the crystalline phase. This condition is of so 
general a nature that it fully justifies the utilization of Ttr as the characteristic tem- 
perature scale. Therefore, P/PB can apparently be taken in place of P/Pcc in (6) and the 
ratio T/Ttr or T/T m in place of T/Tcc (here its value is referred to T m by taking account of 
the weak temperature dependence of E). Comparison with test should show how allowable is 
such a modification of (6). 

On the basis of (6) we have for the melting curve 

p := p j  ( T / ~ r , ,  A*). 

The melting curves of thermodynamically similar substances agree in the P/PB, T/Ttr (or T/T m) 
coordinates. It is pertinent to note that according to test data, the relative magnitudes of 
the differences in the volumes and entropies of the liquid and crystalline phases (V~ s - 
V~C)/v~ c, (S~ s - S~c)/Su c tend to constant values as the temperature rises on the section of 
the melting curve where dp/dT > 0, whichdenotes the constancy of dp/dT also at high temper- 
atures. 

SIMILARITY RELATIONSHIPS IN TRANSITION PROCESSES OF DISSIPATIVE STRUCTURES 

The evolution of open thermodynamic systems is due to a change in the external conditions 
and consists in the rearrangement or replacement of the initial dissipative structure by an- 
other dissipative structure inherent to this system. This evolution is also called self- 
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organization. According to Prigogine [8], it can be considered as a sequence of phase 

transitions. This deduction is based on the analogy between the rearrangement of a dissi- 
pative structure and a phase transition of the second kind since the change in external con- 
ditions in both cases results in instability of the initial state and, consequently, the 
cooperative nature of the interaction of the enormous number of particles comprising the sys- 
tem, and in the formation of fluctuations of so large a scale that molecular singularities 
are not manifest here in practice; the formation of fluctuations denotes rupture of the ori- 
ginal structure and the formation of a new one. Starting from this deduction in principle, 
the characteristic regularities (7) for phase transitions can be extended to the dissipative 
structure rearrangement process and the relations between the values of the dissipative 
fluxes in the original and newly formed structures are thereby clarified. The importance 
of such relations, especially taking their generality and universality into account, is ob- 
vious. It is illustrated well in the example of the transition of a laminar fluid flow into 
a turbulent one that is accompanied by a change in the heat transmission law (and conceiv- 
ably, the resistivity). Since the laminar motion equations allow of exact solutions while 
such solutions are still unrealizable for turbulent motion, then by using the relationships 
(7) it is possible to find the value of the heat elimination coefficient in a turbul,mt flow 
for phase transitions by means of the exact solution for its value in a laminar flow This 
possibility, which has an incomparably better foundation that the approximate approaches uti- 
lized up to now, opens new paths for the analysis of complex heat transfer problems tas well 
as of hydraulic resistance and mass transfer) under turbulent flow conditions. Becallse of 
the presence of a fluctuating velocity resulting in the growth of the effective value of the 
transport coefficients, a turbulently moving fluid should here be considered as the analog 
of a less symmetric, i.e., more ordered, phase and a laminarly moving fluid as a more sym- 
metric phase. 

In order to make clear the sequence of the analysis presented, we first consider the 
simplest problem of heat transfer between a flat plate and a turbulent fluid flow. ~s is 
known, the analytic solution for a laminar flow with Pr = 1 has the form Nu = 0.67Re o's. 
Since the difference Nu/0.67 Re ~ - 1 equals zero for a laminar flow, then it can be con- 
sidered the analog of the order parameter q. The number Re for whose critical value Recr 
laminar flow goes over into turbulent plays the same part as the temperature does for a 
phase transition. Using the equation q = constll - T/TcI~, where ~ = 0.33 and replacing 
q therein by Nu/0.67 Re ~ - i, and T by Re, we obtain 

O,67ReO. ~ 1 = const 1 ( 8 )  
~ecr 

For Re ~ Recr the one in the left side can be discarded, whereupon we have Nu % Re~ = 
Re ~ which is in good correspondence with test data according to which Nu % Re ~ 

It can therefore be considered proved that the degree of the number Re in the expres- 
sion for the number Nu, and therefore, for the heat elimination coefficient in a turbalent 
flow also, is 0.8 for large Re. As regards the degree of the number Pr (for Pr ~ i), it is 
not determined here, particularly because the constant in the right side of the equation 
for the analog N can contain the number Pr. Because of its generality, (9) can even )e 
applied for the transition domain Re ~ Recr. The problem of heat transfer during nucleate 
boiling of a liquid is more complex. The analytic solution for the case when the free con- 
vective motion of the boiling liquid is laminar is mentioned in [9], by starting from equally 
likely but still approximate assumptions and the case of turbulent convective motion of a 
boiling fluid was also examined. It turns out that the expressions for the heat flux density 
q can be written in a single manner in both cases 

q(c~P) 2 ~ /  2a• ~ p _ c o n s t P r m R e n  
xp"rPr ~/4 ~ Ap ' ( 9 )  

w h e r e  m, n a r e  1 / 3 ,  1 / 2  f o r  l a m i n a r  m o t i o n  a n d  - 1 / 4 ,  0 . 8  f o r  t u r b u l e n t .  The  n u m b e r  Re = 
a/~ da/dT is expressed in terms of the radius a of a vapor bubble averaged with respect to 
time; Ap = r(T h - Ts)/Ts; T h is the liquid temperature at the heating surface, where T h - Ts= 
2oTs/P"ra. 

If 6p, T h - T s in (9) are expressed in terms of ~, then the heat elimination coeflicient 
(taking into account that the quantity a da/dT grows weakly with a) will be proportional 

to the radius of the vapor bubble ~ to a power somewhat greater than 0.25 for turbule[t con- 
vective motion of the boiling liquid, where the bubble radius itself equals the dimension, in 
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order of magnitude, of the heating surface indentation in which the bubbles are formed. 

In order to see the correctness of (9) for turbulent free convective motion of a boiling 
liquid, we will start from the exact solution for the case of laminar free convective motion 
of a boiling liquid. It is easy to see that the role of the order parameter in the case 
under consideration is played by the difference in the ratio between the right side of (9) 
for the laminar mode and its left side and one. On the basis of the general expression (7) 
for N, we conclude that for Re ~ Recr this ratio will be proportional to Re ~ from which 
there results that the degree of the number Re in (9) will indeed equal 0.8 in the case of 
turbulent convective motion of a boiling liquid. 

Shekriladze [i0] thoroughly analyzed (9) for nucleate boiling of a fluid in turbulent 
free convective motion and arrived at the following conclusion: a) equation (9) agrees with 
test data and is identical to the equation proposed later by Shekriladze and his colleagues: 
Nu = 1.22"10-2"K~ *~ K = qa2rp"/okTs, Re* = Jp(v" - v)2TsPcp/~p"2r2; b) the theory 
of nucleate boiling developed in [9] has a physical foundation and permits clarification of 
the means for intensification of this kind of heat transfer for small thermal drops; c) the 
deduction resulting from (9) about the increase in the heat elimination coefficient as the 
vapor bubble size grows is of value in principle, since the fact that approximately five years 
after the publication of [9] porous surfaces capable of forming vapor bubbles of comparative- 
ly large size were proposed for the intensification of heat transfer during boiling must be 
referred back to c). 

NOTATION 

T, absolute temperature, ~ p, pressure; v, specific volume; p, density; ~, molecular 
mass; R, gas constant; Tc, Pc, Vc, critical point parameters; Tcc , Pcc, Vcc, crystal tricri- 
tical or bicritical point parameters; Ttr , triple point temperature; Tm, melting point at 
atmospheric pressure; E, energy of vacancy formation; Va, activation volume; PB, ratio E/va; 
r Gibbs energy density; n, order parameter; Tc, a point of a phase transition of the second 
kind; i/(d2~/a~2), susceptibility; ~, 8, 7, v, critical exponents; cp, specific heat for p = 
const; ~B, kinematic viscosity; K, fluid thermal conductivity; %, heat conduction; r, heat 
of vapor formation; o, surface tension; p", saturated vapor density; Th, fluid heating tem- 
perature; Ts, saturation temperature; q, thermal flux density; s T, coefficient of heat eli- 
mination; a, vapor bubble radius; T, time; Re, Reynolds number; Pr, Prandtl number; Nu, 
Nusseltnumber. 
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